Feb 22, 2020

Electrical Substation Components & their Workings



Electrical Substation 


The electricity substation is a network of electrical equipment which is connected in a structured way in order to supply electricity to end consumers. There is numerous electrical substation components like outgoing and incoming circuitry each of which having its circuit breakers, isolators, transformers, and busbar system etc for the smooth functioning of the system. The power system is having numerous ingredients such as distribution, transmission, and generation systems and Substations act as a necessary ingredient for operations of the power system. The substations are entities from which consumers are getting their electrical supply to run their loads while required power quality can be delivered to the customers by changing frequency and voltage levels etc..
The electricity substation designs are purely dependent on the need, for instance, a single bus or complex bus system etc. Moreover, the design is also dependent on the application as well, for instance, indoor substations, generation substations, transmission substations, pole substations, outdoor substation, converter substation, and switching substation etc. There is a need of collector substation as well in cases of large power generating systems e.g. multiple thermal and hydropower plants connected together for transfer of power to a single transmission unit from numerous co-located turbines.
The following are major electrical components of substations and their working. Each component functions are explained in detail with machinery, substation components diagram is also given above for your reference.
List of Electrical Substation Equipment  :
  1. Instrument Transformers
  2. Current Transformer
  3. Potential Transformer
  4. Conductors
  5. Insulators
  6. Isolators
  7. Busbars
  8. Lightning Arrestors
  9. Circuit Breakers
  10. Relays
  11. Capacitor Banks
  12. Batteries
  13. WaveTrapper
  14. SwitchYard
  15. Metering and Indication Instruments
  16. Equipment for Carrier Current
  17. Prevention from Surge Voltage
  18. The Outgoing Feeders

Instrument Transformers:

The instrument transformer is a static device utilized for reduction of higher currents and voltages for safe and practical usage which are measurable with traditional instruments such as digital multi-meter etc. The value range is from 1A to 5A and voltages such as 110V etc. The transformers are also used for actuation of AC protective relay through supporting voltage and current. Instrument transformers are shown in the figure below and its two types are also discussed underneath.

Instrument transformers

Current Transformer:

A current transformer is a gadget utilized for the transformation of higher value currents into lower values. It is utilized in an analogous manner to that of AC instruments, control apparatus, and meters. These are having lower current ratings and are used for maintenance and installation of current relays for protection purpose in substations.
Current Transformer
Current Transformer

Potential Transformer:

The potential transformers are similar in characteristics as current transformers but are utilized for converting high voltages to lower voltages for protection of relay system and for lower rating metering of voltage measurements.
Potential Transformer
Potential Transformer

Conductors:

Conductors are the materials which permit flow of electrons through it. The best conductors are copper and aluminum etc. The conductors are utilized for transmission of energy from place to place over substations.

Insulators:

The insulators are the materials which do not permit flow of electrons through it. Insulators are resisting electric property. There are numerous types of insulators such as shackle, strain type, suspension type, and stray type etc. Insulators are used in substations for avoiding contact with humans or short circuit.
Insulator
Insulator

Isolators:

The isolators in substations are mechanical switches which are deployed for isolation of circuits when there is an interruption of current. These are also known with the name of disconnected switches operation under no-load conditions and are not fortified with arc-quenching devices. These switches have no specific current breaking value neither these have current making value. These are mechanically operated switches.
Isolator
Isolator

Busbars:

The busbar is among the most important elements of the substation and is a conductor which carries current to a point having numerous connections with it. The busbar is a kind of electrical junction which has outgoing and incoming current paths. Whenever a fault occurs in the busbar, entire components connected to that specific section should be tripped for giving thorough isolation in a small time, for instance, 60ms for avoiding danger rising due to conductor’s heat. These are of different types such as ring bus, double bus, and single bus etc. A simple bus bar is shown in the figure below which is considered as one of the most vital electrical substation components.
Busbar in Substation
Busbar in Substation

The Lightning Arresters:

The lightning arresters can be considered as the first ever components of a substation. These are having a function of protecting equipment of substation from high voltages and are also limiting the amplitude and duration of the current’s flow. These are connected amid earth and line i.e. connected in line with equipment in the substation. These are meant for diversion of current to earth if any current surge appears hence by protecting insulation as well as conductor from damages. These are of various types and are distinguished based on duties.
Lightning Arrester
Lightning Arrester

Circuit Breakers:

The circuit breakers are such type of switches utilized for closing or opening circuits at the time when a fault occurs within the system. The circuit breaker has 2 mobile contacts which are in OFF condition in normal situations. At the time when any fault occurs in the system, a relay is sending the tripped command to the circuit breaker which moves the contacts apart, hence avoiding any damage to the circuitry.
Circuit Breaker in Substation
Circuit Breaker in Substation

Relays:

Relays are a dedicated component of electrical substation equipment for the protection of system against abnormal situations e.g. faults. Relays are basically sensing gadgets which are devoted for sensing faults and are determining its location as well as sending interruption message of tripped command to the specific point of the circuit. A circuit breaker is falling apart its contacts after getting the command from relays. These are protecting equipment from other damages as well such as fire, the risk to human life, and removal of fault from a particular section of the substation. Following is the substation component diagram is known as a relay.
Relays
Relays

Capacitor Banks:

The capacitor bank is defined as a set of numerous identical capacitors which are connected either in parallel or series inside an enclosure and are utilized for the correction of power factor as well as protection of circuitry of the substation. These are acting like the source of reactive power and are thus reducing phase difference amid current and voltage. These are increasing the capacity of ripple current of supply and avoid unwanted selves in the substation system. The use of capacitor banks is an economical technique for power factor maintenance and for correction of problems related to power lag.
Capacitor Bank in Substation
Capacitor Bank in Substation

Batteries:

Some of the important substation parts such as emergency lighting, relay system, and automated control circuitry are operated through batteries. The size of the battery bank is depending on the voltage required for operation of the DC circuit respectively. The storage batteries are of two basic types i.e. acid-alkaline batteries and lead-acid batteries. The lead acid batteries are of the most common type and used in substations in abundance as these provide high voltages and are cheaper in cost.
Substation Batteries
Substation Batteries

Wave Trapper:

The wave trapper is one of the substation components which is placed on the incoming lines for trapping of high-frequency waves. The high-frequency waves which are coming from nearby substations or other localities are disturbing the current and voltages, hence its trapping is of great importance. The wave trapper is basically tripping high-frequency waves and is then diverting the waves into telecom panel.
Wave Trapper in Substation
Wave Trapper in Substation

Switchyard:

The switchyards, switches, circuit breakers, and transformers for the connection and disconnection of transformers and circuit breakers. These are also having lighting arrestors to protect the substation or power station from strokes of natural lighting.
Swtich Yard
SwitchYard

Metering and Indication Instruments:

There are numerous instruments for metering and indication in each substation such as watt-meters, voltmeters, ammeters, power factor meters, kWh meters, volt-ampere meters, and KVARH meters etc. These instruments are installed at different places within substation for controlling and maintaining values of current and voltages. For instance, 33/11KV substation equipment will comprise digital multi-meters for various readings of currents and voltages.

Equipment for Carrier Current:

The equipment of carrier current is installed in the substation for the purpose of communication, supervisory control, telemetry, and/or relaying etc. Such equipment is often mounted on a room which is known as carrier room and is connected across the power circuit of high voltages.

Prevention from Surge Voltage:

The transient of overvoltages substation system is because of inherent and natural characteristics. There are several reasons for overvoltages which may be caused due to a sudden alteration in conditions of the system e.g. load rejection, faults, or switching operations etc. or because of lighting etc. The types of overvoltages can be classified into two i.e. switching generated or lightning generated. However, the scale of overvoltages could be over maximum allowable voltage levels, hence these are required to be protected and reduced for avoiding damage to instruments, equipment, and lines of a substation. In this way, the performance of the substation system can be enhanced.

The Outgoing Feeders:

There are numerous outgoing feeders which are connected to that of substations. Basically, the connection is with a bus of the substation for carrying power from the substation to service points. The feeders can hug overhead streets, underground, underneath streets, and are carrying electrical power to that of distribution transformers at near or farther premises. The isolator in substation and breaker of the feeder are considered as entities of the substation and are of metal-clad typically. Whenever a fault is occurring in the feeder, the protection is detecting and the circuit breaker is opened. After detection of fault through manual or automatic way, there are more than one attempts for re-energizing the feeder.

Elements of a Substation

Electrical Substation Model

Elements of a substation A: Primary power lines’ side B: Secondary power lines’ side
  1. Primary power lines
  2. Ground wire
  3. Overhead lines
  4. Transformer for measurement of electric voltage
  5. Disconnect switch
  6. Circuit breaker
  7. Current transformer
  8. Lightning arrester
  9. Main transformer
  10. Control building
  11. Security fence
  12. Secondary power lines
While the above are some standard components that are seen in the electrical substations, depending upon the type of substation and their functioning the electrical substation components may slightly change. Also with the advancements in the technology many components are constantly upgraded to keep with the latest advancements to deliver constant power output.

Jan 25, 2020

Experiment: Series batterie

Series batteries

PARTS AND MATERIALS
  • Two 6-volt batteries
  • One 9-volt battery
Actually, any size batteries will suffice for this experiment, but it is recommended to have at least two different voltages available to make it more interesting.

CROSS-REFERENCES
Lessons In Electric Circuits, Volume 1, chapter 5: "Series and Parallel Circuits"
Lessons In Electric Circuits, Volume 1, chapter 11: "Batteries and Power Systems"

LEARNING OBJECTIVES
  • How to connect batteries to obtain different voltage levels

SCHEMATIC DIAGRAM

ILLUSTRATION

INSTRUCTIONS
Series
Connecting components in series means to connect them in-line with each other, so that there is but a single path for electrons to flow through them all. If you connect batteries so that the positive of one connects to the negative of the other, you will find that their respective voltages add. Measure the voltage across each battery individually as they are connected, then measure the total voltage across them both, like this:
Try connecting batteries of different sizes in series with each other, for instance a 6-volt battery with a 9-volt battery. What is the total voltage in this case? Try reversing the terminal connections of just one of these batteries, so that they are opposing each other like this:
How does the total voltage compare in this situation to the previous one with both batteries "aiding?" Note the polarity of the total voltage as indicated by the voltmeter indication and test probe orientation. Remember, if the meter's digital indication is a positive number, the red probe is positive (+) and the black probe negative (-); if the indication is a negative number, the polarity is "backward" (red=negative, black=positive). Analog meters simply will not read properly if reverse-connected, because the needle tries to move the wrong direction (left instead of right). Can you predict what the overall voltage polarity will be, knowing the polarities of the individual batteries and their respective strengths?

Electron activity in chemical reactions

Electron activity in chemical reactions

So far in our discussions on electricity and electric circuits, we have not discussed in any detail how batteries function. Rather, we have simply assumed that they produce constant voltage through some sort of mysterious process. Here, we will explore that process to some degree and cover some of the practical considerations involved with real batteries and their use in power systems.
atomic structure particle electron proton neutron nucleus
In the first chapter of this book, the concept of an atom was discussed, as being the basic building-block of all material objects. Atoms, in turn, however, are composed of even smaller pieces of matter called particles. Electrons, protons, and neutrons are the basic types of particles found in atoms. Each of these particle types plays a distinct role in the behavior of an atom. While electrical activity involves the motion of electrons, the chemical identity of an atom (which largely determines how conductive the material will be) is determined by the number of protons in the nucleus (center).
The protons in an atom's nucleus are extremely difficult to dislodge, and so the chemical identity of any atom is very stable. One of the goals of the ancient alchemists (to turn lead into gold) was foiled by this sub-atomic stability. All efforts to alter this property of an atom by means of heat. light, or friction were met with failure. The electrons of an atom, however, are much more easily dislodged. As we have already seen, friction is one way in which electrons can be transferred from one atom to another (glass and silk, wax and wool), and so is heat (generating voltage by heating a junction of dissimilar metals, as in the case of thermocouples).
bond
Electrons can do much more than just move around and between atoms: they can also serve to link different atoms together. This linking of atoms by electrons is called a chemical bond. A crude (and simplified) representation of such a bond between two atoms might look like this:
There are several types of chemical bonds, the one shown above being representative of a covalent bond, where electrons are shared between atoms. Because chemical bonds are based on links formed by electrons, these bonds are only as strong as the immobility of the electrons forming them. That is to say, chemical bonds can be created or broken by the same forces that force electrons to move: heat, light, friction, etc.
molecule
When atoms are joined by chemical bonds, they form materials with unique properties known as molecules. The dual-atom picture shown above is an example of a simple molecule formed by two atoms of the same type. Most molecules are unions of different types of atoms. Even molecules formed by atoms of the same type can have radically different physical properties. Take the element carbon, for instance: in one form, graphite, carbon atoms link together to form flat "plates" which slide against one another very easily, giving graphite its natural lubricating properties. In another form, diamond, the same carbon atoms link together in a different configuration, this time in the shapes of interlocking pyramids, forming a material of exceeding hardness. In yet another form, Fullerene,dozens of carbon atoms form each molecule, which looks something like a soccer ball. Fullerene molecules are very fragile and lightweight. The airy soot formed by excessively rich combustion of acetylene gas (as in the initial ignition of an oxy-acetylene welding/cutting torch) is composed of many tiny Fullerene molecules.
When alchemists succeeded in changing the properties of a substance by heat, light, friction, or mixture with other substances, they were really observing changes in the types of molecules formed by atoms breaking and forming bonds with other atoms. Chemistry is the modern counterpart to alchemy, and concerns itself primarily with the properties of these chemical bonds and the reactions associated with them.
ionic bond covalent bond cell electrolyte
A type of chemical bond of particular interest to our study of batteries is the so-called ionic bond, and it differs from the covalent bond in that one atom of the molecule possesses an excess of electrons while another atom lacks electrons, the bonds between them being a result of the electrostatic attraction between the two unlike charges. Consequently, ionic bonds, when broken or formed, result in electrons moving from one place to another. This motion of electrons in ionic bonding can be harnessed to generate an electric current. A device constructed to do just this is called a voltaic cell, or cell for short, usually consisting of two metal electrodes immersed in a chemical mixture (called an electrolyte) designed to facilitate a chemical reaction:
battery lead-acid battery
In the common "lead-acid" cell (the kind commonly used in automobiles), the negative electrode is made of lead (Pb) and the positive is made of lead peroxide (Pb02), both metallic substances. The electrolyte solution is a dilute sulfuric acid (H2SO4 + H2O). If the electrodes of the cell are connected to an external circuit, such that electrons have a place to flow from one to the other, negatively charged oxygen ions (O) from the positive electrode (PbO2) will ionically bond with positively charged hydrogen ions (H) to form molecules water (H2O). This creates a deficiency of electrons in the lead peroxide (PbO2) electrode, giving it a positive electrical charge. The sulfate ions (SO4) left over from the disassociation of the hydrogen ions (H) from the sulfuric acid (H2SO4) will join with the lead (Pb) in each electrode to form lead sulfate (PbSO4):
hydrometer
This process of the cell providing electrical energy to supply a load is called discharging, since it is depleting its internal chemical reserves. Theoretically, after all of the sulfuric acid has been exhausted, the result will be two electrodes of lead sulfate (PbSO4) and an electrolyte solution of pure water (H2O), leaving no more capacity for additional ionic bonding. In this state, the cell is said to be fully discharged. In a lead-acid cell, the state of charge can be determined by an analysis of acid strength. This is easily accomplished with a device called a hydrometer, which measures the specific gravity (density) of the electrolyte. Sulfuric acid is denser than water, so the greater the charge of a cell, the greater the acid concentration, and thus a denser electrolyte solution.
There is no single chemical reaction representative of all voltaic cells, so any detailed discussion of chemistry is bound to have limited application. The important thing to understand is that electrons are motivated to and/or from the cell's electrodes via ionic reactions between the electrode molecules and the electrolyte molecules. The reaction is enabled when there is an external path for electric current, and ceases when that path is broken.
Edison cell
Being that the motivation for electrons to move through a cell is chemical in nature, the amount of voltage (electromotive force) generated by any cell will be specific to the particular chemical reaction for that cell type. For instance, the lead-acid cell just described has a nominal voltage of 2.2 volts per cell, based on a fully "charged" cell (acid concentration strong) in good physical condition. There are other types of cells with different specific voltage outputs. The Edison cell, for example, with a positive electrode made of nickel oxide, a negative electrode made of iron, and an electrolyte solution of potassium hydroxide (a caustic, not acid, substance) generates a nominal voltage of only 1.2 volts, due to the specific differences in chemical reaction with those electrode and electrolyte substances.
primary cell secondary cell
The chemical reactions of some types of cells can be reversed by forcing electric current backwards through the cell (in the negative electrode and out the positive electrode). This process is called charging. Any such (rechargeable) cell is called a secondary cell. A cell whose chemistry cannot be reversed by a reverse current is called a primary cell.
When a lead-acid cell is charged by an external current source, the chemical reactions experienced during discharge are reversed:
Review
  • Atoms bound together by electrons are called molecules.
  • Ionic bonds are molecular unions formed when an electron-deficient atom (a positive ion) joins with an electron-excessive atom (a negative ion).
  • Chemical reactions involving ionic bonds result in the transfer of electrons between atoms. This transfer can be harnessed to form an electric current.
  • cell is a device constructed to harness such chemical reactions to generate electric current.
  • A cell is said to be discharged when its internal chemical reserves have been depleted through use.
  • secondary cell's chemistry can be reversed (recharged) by forcing current backwards through it.
  • primary cell cannot be practically recharged.
  • Lead-acid cell charge can be assessed with an instrument called a hydrometer, which measures the density of the electrolyte liquid. The denser the electrolyte, the stronger the acid concentration, and the greater charge state of the cell.

Battery construction

Battery construction

Battery
The word battery simply means a group of similar components. In military vocabulary, a "battery" refers to a cluster of guns. In electricity, a "battery" is a set of voltaic cells designed to provide greater voltage and/or current than is possible with one cell alone.
Cell
The symbol for a cell is very simple, consisting of one long line and one short line, parallel to each other, with connecting wires:
The symbol for a battery is nothing more than a couple of cell symbols stacked in series:
As was stated before, the voltage produced by any particular kind of cell is determined strictly by the chemistry of that cell type. The size of the cell is irrelevant to its voltage. To obtain greater voltage than the output of a single cell, multiple cells must be connected in series. The total voltage of a battery is the sum of all cell voltages. A typical automotive lead-acid battery has six cells, for a nominal voltage output of 6 x 2.2 or 13.2 volts:
The cells in an automotive battery are contained within the same hard rubber housing, connected together with thick, lead bars instead of wires. The electrodes and electrolyte solutions for each cell are contained in separate, partitioned sections of the battery case. In large batteries, the electrodes commonly take the shape of thin metal grids or plates, and are often referred to as plates instead of electrodes.
For the sake of convenience, battery symbols are usually limited to four lines, alternating long/short, although the real battery it represents may have many more cells than that. On occasion, however, you might come across a symbol for a battery with unusually high voltage, intentionally drawn with extra lines. The lines, of course, are representative of the individual cell plates:
If the physical size of a cell has no impact on its voltage, then what does it affect? The answer is resistance, which in turn affects the maximum amount of current that a cell can provide. Every voltaic cell contains some amount of internal resistance due to the electrodes and the electrolyte. The larger a cell is constructed, the greater the electrode contact area with the electrolyte, and thus the less internal resistance it will have.
Resistance, internal to battery
Although we generally consider a cell or battery in a circuit to be a perfect source of voltage (absolutely constant), the current through it dictated solely by the external resistance of the circuit to which it is attached, this is not entirely true in real life. Since every cell or battery contains some internal resistance, that resistance must affect the current in any given circuit:
The real battery shown above within the dotted lines has an internal resistance of 0.2 Ω, which affects its ability to supply current to the load resistance of 1 Ω. The ideal battery on the left has no internal resistance, and so our Ohm's Law calculations for current (I=E/R) give us a perfect value of 10 amps for current with the 1 ohm load and 10 volt supply. The real battery, with its built-in resistance further impeding the flow of electrons, can only supply 8.333 amps to the same resistance load.
The ideal battery, in a short circuit with 0 Ω resistance, would be able to supply an infinite amount of current. The real battery, on the other hand, can only supply 50 amps (10 volts / 0.2 Ω) to a short circuit of 0 Ω resistance, due to its internal resistance. The chemical reaction inside the cell may still be providing exactly 10 volts, but voltage is dropped across that internal resistance as electrons flow through the battery, which reduces the amount of voltage available at the battery terminals to the load.
Since we live in an imperfect world, with imperfect batteries, we need to understand the implications of factors such as internal resistance. Typically, batteries are placed in applications where their internal resistance is negligible compared to that of the circuit load (where their short-circuit current far exceeds their usual load current), and so the performance is very close to that of an ideal voltage source.
If we need to construct a battery with lower resistance than what one cell can provide (for greater current capacity), we will have to connect the cells together in parallel:
Essentially, what we have done here is determine the Thevenin equivalent of the five cells in parallel (an equivalent network of one voltage source and one series resistance). The equivalent network has the same source voltage but a fraction of the resistance of any individual cell in the original network. The overall effect of connecting cells in parallel is to decrease the equivalent internal resistance, just as resistors in parallel diminish in total resistance. The equivalent internal resistance of this battery of 5 cells is 1/5 that of each individual cell. The overall voltage stays the same: 2.2 volts. If this battery of cells were powering a circuit, the current through each cell would be 1/5 of the total circuit current, due to the equal split of current through equal-resistance parallel branches.
Review
  • battery is a cluster of cells connected together for greater voltage and/or current capacity.
  • Cells connected together in series (polarities aiding) results in greater total voltage.
  • Physical cell size impacts cell resistance, which in turn impacts the ability for the cell to supply current to a circuit. Generally, the larger the cell, the less its internal resistance.
  • Cells connected together in parallel results in less total resistance, and potentially greater total current.

Battery ratings

Battery ratings

Coulomb Unit, coulomb Amp-hour Battery capacity Capacity, battery
Because batteries create electron flow in a circuit by exchanging electrons in ionic chemical reactions, and there is a limited number of molecules in any charged battery available to react, there must be a limited amount of total electrons that any battery can motivate through a circuit before its energy reserves are exhausted. Battery capacity could be measured in terms of total number of electrons, but this would be a huge number. We could use the unit of the coulomb (equal to 6.25 x 1018 electrons, or 6,250,000,000,000,000,000 electrons) to make the quantities more practical to work with, but instead a new unit, the amp-hour, was made for this purpose. Since 1 amp is actually a flow rate of 1 coulomb of electrons per second, and there are 3600 seconds in an hour, we can state a direct proportion between coulombs and amp-hours: 1 amp-hour = 3600 coulombs. Why make up a new unit when an old would have done just fine? To make your lives as students and technicians more difficult, of course!
A battery with a capacity of 1 amp-hour should be able to continuously supply a current of 1 amp to a load for exactly 1 hour, or 2 amps for 1/2 hour, or 1/3 amp for 3 hours, etc., before becoming completely discharged. In an ideal battery, this relationship between continuous current and discharge time is stable and absolute, but real batteries don't behave exactly as this simple linear formula would indicate. Therefore, when amp-hour capacity is given for a battery, it is specified at either a given current, given time, or assumed to be rated for a time period of 8 hours (if no limiting factor is given).
For example, an average automotive battery might have a capacity of about 70 amp-hours, specified at a current of 3.5 amps. This means that the amount of time this battery could continuously supply a current of 3.5 amps to a load would be 20 hours (70 amp-hours / 3.5 amps). But let's suppose that a lower-resistance load were connected to that battery, drawing 70 amps continuously. Our amp-hour equation tells us that the battery should hold out for exactly 1 hour (70 amp-hours / 70 amps), but this might not be true in real life. With higher currents, the battery will dissipate more heat across its internal resistance, which has the effect of altering the chemical reactions taking place within. Chances are, the battery would fully discharge some time before the calculated time of 1 hour under this greater load.
Conversely, if a very light load (1 mA) were to be connected to the battery, our equation would tell us that the battery should provide power for 70,000 hours, or just under 8 years (70 amp-hours / 1 milliamp), but the odds are that much of the chemical energy in a real battery would have been drained due to other factors (evaporation of electrolyte, deterioration of electrodes, leakage current within battery) long before 8 years had elapsed. Therefore, we must take the amp-hour relationship as being an ideal approximation of battery life, the amp-hour rating trusted only near the specified current or timespan given by the manufacturer. Some manufacturers will provide amp-hour derating factors specifying reductions in total capacity at different levels of current and/or temperature.
For secondary cells, the amp-hour rating provides a rule for necessary charging time at any given level of charge current. For example, the 70 amp-hour automotive battery in the previous example should take 10 hours to charge from a fully-discharged state at a constant charging current of 7 amps (70 amp-hours / 7 amps).
Approximate amp-hour capacities of some common batteries are given here:
  • Typical automotive battery: 70 amp-hours @ 3.5 A (secondary cell)
  • D-size carbon-zinc battery: 4.5 amp-hours @ 100 mA (primary cell)
  • 9 volt carbon-zinc battery: 400 milliamp-hours @ 8 mA (primary cell)
As a battery discharges, not only does it diminish its internal store of energy, but its internal resistance also increases (as the electrolyte becomes less and less conductive), and its open-circuit cell voltage decreases (as the chemicals become more and more dilute). The most deceptive change that a discharging battery exhibits is increased resistance. The best check for a battery's condition is a voltage measurement under load, while the battery is supplying a substantial current through a circuit. Otherwise, a simple voltmeter check across the terminals may falsely indicate a healthy battery (adequate voltage) even though the internal resistance has increased considerably. What constitutes a "substantial current" is determined by the battery's design parameters. A voltmeter check revealing too low of a voltage, of course, would positively indicate a discharged battery:
Fully charged battery:
Now, if the battery discharges a bit . . .
. . . and discharges a bit further . . .
. . . and a bit further until it's dead.
Notice how much better the battery's true condition is revealed when its voltage is checked under load as opposed to without a load. Does this mean that it's pointless to check a battery with just a voltmeter (no load)? Well, no. If a simple voltmeter check reveals only 7.5 volts for a 13.2 volt battery, then you know without a doubt that it's dead. However, if the voltmeter were to indicate 12.5 volts, it may be near full charge or somewhat depleted -- you couldn't tell without a load check. Bear in mind also that the resistance used to place a battery under load must be rated for the amount of power expected to be dissipated. For checking large batteries such as an automobile (12 volt nominal) lead-acid battery, this may mean a resistor with a power rating of several hundred watts.
Review
  • The amp-hour is a unit of battery energy capacity, equal to the amount of continuous current multiplied by the discharge time, that a battery can supply before exhausting its internal store of chemical energy:
       Continuous Current [A] = Amp-hour rating / (Dis)charge time [h]
       (Dis)charge time [h] = Amp-hour rating / Continuous Current [A]
  • An amp-hour battery rating is only an approximation of the battery's charge capacity, and should be trusted only at the current level or time specified by the manufacturer. Such a rating cannot be extrapolated for very high currents or very long times with any accuracy.
  • Discharged batteries lose voltage and increase in resistance. The best check for a dead battery is a voltage test under load.

Mercury Standard Cells

Mercury Standard Cells

Back in the early days of electrical measurement technology, a special type of battery known as a mercury standard cell was popularly used as a voltage calibration standard. The output of a mercury cell was 1.0183 to 1.0194 volts DC (depending on the specific design of cell), and was extremely stable over time. Advertised drift was around 0.004 percent of rated voltage per year. Mercury standard cells were sometimes known as Weston cells or cadmium cells.
Unfortunately, mercury cells were rather intolerant of any current drain and could not even be measured with an analog voltmeter without compromising accuracy. Manufacturers typically called for no more than 0.1 mA of current through the cell, and even that figure was considered a momentary, or surge maximum! Consequently, standard cells could only be measured with a potentiometric (null-balance) device where current drain is almost zero. Short-circuiting a mercury cell was prohibited, and once short-circuited, the cell could never be relied upon again as a standard device.
Mercury standard cells were also susceptible to slight changes in voltage if physically or thermally disturbed. Two different types of mercury standard cells were developed for different calibration purposes: saturated and unsaturated. Saturated standard cells provided the greatest voltage stability over time, at the expense of thermal instability. In other words, their voltage drifted very little with the passage of time (just a few microvolts over the span of a decade!), but tended to vary with changes in temperature (tens of microvolts per degree Celsius). These cells functioned best in temperature-controlled laboratory environments where long-term stability is paramount. Unsaturated cells provided thermal stability at the expense of stability over time, the voltage remaining virtually constant with changes in temperature but decreasing steadily by about 100 μV every year. These cells functioned best as "field" calibration devices where ambient temperature is not precisely controlled. Nominal voltage for a saturated cell was 1.0186 volts, and 1.019 volts for an unsaturated cell.
Modern semiconductor voltage (zener diode regulator) references have superseded standard cell batteries as laboratory and field voltage standards.

Solar Cell

Solar Cell

Another type of "battery" is the solar cell, a by-product of the semiconductor revolution in electronics. The photoelectric effect, whereby electrons are dislodged from atoms under the influence of light, has been known in physics for many decades, but it has only been with recent advances in semiconductor technology that a device existed capable of harnessing this effect to any practical degree. Conversion efficiencies for silicon solar cells are still quite low, but their benefits as power sources are legion: no moving parts, no noise, no waste products or pollution (aside from the manufacture of solar cells, which is still a fairly "dirty" industry), and indefinite life (at least in theory).
Specific cost of solar cell technology (dollars per kilowatt) is still high but is constantly approaching the costs of electricity from the power grid. Unlike electronic components made from semiconductor material, which can be made smaller and smaller with less scrap as a result of better quality control, a single solar cell still takes the same amount of ultra-pure silicon to make as it did thirty years ago. Superior quality control fails to yield the same production gain seen in the manufacture of chips and transistors (where isolated specks of impurity can ruin many microscopic circuits on one wafer of silicon). The same number of impure inclusions does little to impact the overall efficiency of a 3-inch solar cell. 
Solar cells are often electrically connected and encapsulated as a module. PV modules often have a sheet of glass on the front (sun up) side , allowing light to pass while protecting the semiconductor wafers from the elements (rain, hail, etc.). Solar cells are also usually connected in series in modules, creating an additive voltage. Connecting cells in parallel will yield a higher current. Modules are then interconnected, in series or parallel, or both, to create an array with the desired peak DC voltage and current.
The photo at the left shows polycrystaline photovoltaic cells laminated to backing material in a photovoltaic module. The fine horizontal lines and the broader vertical lines are the connecting wires collecting the generated current. 

Fuel Cell

Fuel Cell

A fascinating device closely related to primary-cell batteries is the fuel cell, so-called because it harnesses the chemical reaction of combustion to generate an electric current. The process of chemical oxidation (oxygen ionically bonding with other elements) is capable of producing an electron flow between two electrodes just as well as any combination of metals and electrolytes. A fuel cell can be thought of as a battery with an externally supplied chemical energy source.
To date, the most successful fuel cells constructed are those which run on hydrogen and oxygen, although much research has been done on cells using hydrocarbon fuels. While "burning" hydrogen, a fuel cell's only waste byproducts are water and a small amount of heat. When operating on carbon-containing fuels, carbon dioxide is also released as a byproduct. Because the operating temperature of modern fuel cells is far below that of normal combustion, no oxides of nitrogen (NOx) are formed, making it far less polluting, all other factors being equal.
The efficiency of energy conversion in a fuel cell from chemical to electrical far exceeds the theoretical Carnot efficiency limit of any internal-combustion engine, which is an exciting prospect for power generation and hybrid electric automobiles.

Search This Blog